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How Should Mathematical Models of Geomorphic Processes be Judged?

Richard M. Iverson

U.S. Geological Survey, Vancouver, Washington

Mathematical models of geomorphic processes can have value as both predictive
tools and precise conceptual frameworks. Well-posed mechanistic models have
great conceptual value because they link geomorphic processes to universal scien-
tific principles, such as conservation of energy, momentum, and mass. Models
without this linkage (e.g., models based exclusively on cellular rules or empirical
correlations) have less conceptual value but offer logical methodology for making
practical predictions in some circumstances. Clear tests of the predictive power of
mechanistic models can be achieved in controlled experiments, whereas natural
landscapes typically have uncontrolled initial and boundary conditions and unre-
solved geological heterogeneities that preclude decisive tests. The best mechanis-
tic models have a simplicity that results from minimizing assumptions and postu-
lates, rather than minimizing mathematics, and this simplicity promotes conclu-
sive tests. Optimal models also employ only parameters that are defined and meas-
ured outside the model context. Common weaknesses in geomorphic models
result from use of freely coined equations without clear links to conservation laws
or compelling data, use of fitted rather than measured values of parameters, lack
of clear distinction between assumptions and approximations, and neglect of the
four-dimensional (space + time) nature of most geomorphic processes. Models for
predicting landslide runout illustrate principles and pitfalls that are common to all
geomorphic modeling.

“The real voyage of discovery consists not in seeking new landscapes
but in having new eyes” [Marcel Proust, translated 1981].

1. INTRODUCTION

Assessment of mathematical models is a critical part of the
scientific method, because mathematical models represent
hypotheses cast in their most precise form.  When expressed
in the language of mathematics, well-posed hypotheses yield
quantitative predictions that are subject to unequivocal tests.
However, as noted by Oreskes et al. [1994, 2001], model test-
ing in the Earth sciences can present special difficulties.
Many Earth processes involve settings, rates, or scales that

are not accessible to direct observation or experimental repli-
cation, and uncertain initial conditions or undocumented het-
erogeneities in geological materials may limit the predictive
power of mathematical models even if the equations are
essentially correct.  In geomorphology, however, these diffi-
culties can be overcome to a considerable extent.

Geomorphology differs from many geosciences because it
involves materials and processes that are accessible to direct
measurements and manipulative experiments.  The time and
length scales characteristic of a flowing river or a failing
slope are not far removed from human experience: a river can
alter its course in a single flood, and a slope can fail before
our eyes. This accessibility means that mathematical modeling
of geomorphic processes can benefit from relatively stringent
quantitative tests that are similar to those of classical physics
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and dissimilar from those of deep-Earth and deep-time geo-
sciences, in which material properties and initial and boundary
conditions must be inferred rather than measured or con-
trolled.  However, despite the ready accessibility of geomorphic
processes and the recent proliferation of mathematical models
that describe them, agreement is lacking on protocols for
model assessment. Opinions vary widely about the purpose
of mathematical models in geomorphology and the standards
by which such models should be judged.

In this paper I suggest criteria for judging the merit of geo-
morphic models, with an emphasis on mathematical models
of geomorphic processes that operate on time scales directly
observable by humans. Forecasting the effects of geomorphic
processes on observable time scales is critical because it pro-
vides a basis for informed decisions about land management
and hazard assessment, and these applications gain urgency
and importance as human habitation and exploitation of land-
scapes grow. In addition, applied problems highlight the need
for rigorous standards of model appraisal; the relatively
relaxed standards that are sometimes unavoidable in deep-
Earth and deep-time geosciences are unsatisfactory when
human welfare and ecosystem viability in the present centu-
ry are at stake. Sound models of observable geomorphic
processes also provide the firmest foundations for models of
long-term, unobservable landscape change: just as biologists
cannot draw strong inferences about evolution of life forms
without observing and understanding the workings of molec-
ular genetics, geomorphologists cannot draw strong infer-
ences about evolution of landscapes without understanding
the workings of observable erosion and sedimentation events
[cf. Platt, 1964]. 

Two overarching principles, which concern prediction and
parsimony, can guide development and appraisal of mathe-
matical models of observable geomorphic processes. The
prediction principle has been widely acknowledged and
accepted in all sciences: models should forecast the outcome
of as-yet unobserved events. Although relevance of this prin-
ciple is clear, its application is muddied by questions about
what constitutes a valuable geomorphic prediction [Shreve,
1979; Haff, 1996]. For example, does a prediction of experi-
mental results have value that transfers to the field? How
valuable are a priori model predictions in comparison to cal-
ibrated fits? What are the relative merits of mechanistic mod-
els versus empirical statistical models as predictive tools?
What distinguishes phenomenological predictions from
chronological predictions aimed at foretelling the future,
which may involve sequences of contingent events?

The principle of parsimony is more subtle than that of pre-
diction, but the significance of parsimony resonates in writ-
ings of Newton and Einstein, who emphasized that models
should minimize the number of axioms or postulates invoked

to explain the physical world. Modelers ought not to invent
new laws where none are warranted, and models should
employ the fewest possible assumptions—even if this pauci-
ty of laws and assumptions imposes difficult mathematics or
experimental tests. It is important to recognize that accurate
and elegantly simple concepts can spawn complex mathe-
matics, and that simple algebraic equations can express tor-
tuous concepts that violate physical laws.

The next two sections of this paper consider the prediction
and parsimony principles in light of underlying philosophical
and methodological issues, and a subsequent section illus-
trates the principles in a more concrete way by discussing
models for predicting landslide runout. The final section of
the paper distills the content of previous sections into ques-
tions for modelers and model users to consider.

2. APPRAISAL OF MODELS AS PREDICTIVE TOOLS

2.1. Phenomenological Versus Chronological Prediction

To evaluate models as predictive tools, it is useful to distin-
guish between phenomenological and chronological predic-
tion. The traditional purview of science is phenom-enologi-
cal prediction—for example, Einstein’s famous prediction of
the equivalence of energy and mass—whereas foretelling the
future has traditionally been the province of clerics and mys-
tics [Raymo, 1998; Sarewitz and Pielke, 2000]. In the case of
regularly cyclical phenomena that involve negligible energy
dissipation (e.g., planetary motion), chronology can be
inferred from phenomenology, but many phenomena studied
in Earth sciences are nonlinear, highly dissipative, and con-
tingent on prior events—attributes that break the clear con-
nection between phenomenology and chronology.
Nonetheless, in recent decades Earth-science modelers have
focused much effort on prediction of chronological events,
such as the timing of earthquakes and progression of climate
change. The great difficulty of successfully predicting future
events appears deeply rooted in the irreversibility of Earth
processes and their sensitivity to contingencies. This sensi-
tivity does not imply that useful predictions are impossible,
however. Rather, it implies that models will yield the most
successful and testable predictions if they focus chiefly on
phenomenology rather than on chronologies that involve
sequences of contingent events. 

Successful phenomenological predictions allow observers
to anticipate the outcome of specific events, even if the exact
timing or sequence of those events cannot be foretold with
much accuracy. As a logical construct, a phenomenological
prediction states that if a particular condition exists or event
occurs, then another condition or event will occur as a con-
sequence. The prediction follows the precepts of classical
physics and distinguishes cause and effect [cf. Cleland,

2 HOW SHOULD MATHEMATICAL MODELS BE JUDGED?



2001]. For example, a geomorphic prediction might state
that if a particular slope with a particular antecedent pore-
pressure distribution is subject to rainfall at a rate exceeding
1 cm/hour for ten hours, the rain will cause the slope to fail
[e.g., Iverson, 2000]. If such a prediction is accurate, its util-
ity is clear, but the prediction does not generally foretell the
future because it requires specification of an initial state
(e.g., antecedent pore pressures) and provides no means of
anticipating the onset of triggering rain. Despite this type of
limitation, phenomenological predictions can provide impor-
tant information on rates of processes. Such rate predictions
may explicitly include time, but they differ from foretelling
the future because they assume knowledge of a relevant ini-
tial state, independent of contingencies.

The difference between phenomenological and chronolog-
ical prediction is more than philosophical, because it implies
practical limits on prediction of geomorphic change that
involves sequences of contingent events.  In such predictions
a pivotal issue is whether a state measured at some time t =
t0 contains sufficient information to accurately forecast a
subsequent state at t = t0 + ∆t. For example, in the case of
slope failure triggered by rainfall, an initial state measured at
time t = 0 might contain enough information for accurate
prediction of landsliding during a rainstorm at t = 1 week but
too little information for accurate prediction of landsliding
during an identical rainstorm at t = 100 years. As time pro-
ceeds, a deterministic phenomenological prediction can
degenerate into a poorly constrained chronological predic-
tion owing to the cumulative effect of nonlinearities and con-
tingencies that cause memory of the measured initial state to
fade [e.g., Lighthill, 1994]. 

Formulation and testing of models that make phenomeno-
logical predictions of observable geomorphic events involves
many challenges, which are described below. Conclusive
testing of geomorphic models that foretell the future on time
scales unobservable by humans (or decipher the unobserved
past by forward modeling in time from an assumed initial
condition) is perhaps impossible [Cleland, 2001], and is
beyond the scope of this paper.

2.2. Testing Predictions with Data

Quantitative observations of a phenomenon (i.e., data) are
rightly viewed as the ultimate test of the predictive capability
of any mathematical model, but in geomorphology, where
opportunities for data collection abound, what data are best
suited to this task? The traditional view in geosciences is that
the best test of a model is provided by data collected in the
field, where processes operate at full complexity, unfettered
by artificial constraints. This field-test paradigm involves
assumptions about the nature and purpose of models them-

selves, and the paradigm may be inappropriate in the case of
mechanistic geomorphic models. 

If the purpose of a model is exclusively prediction of the
final outcome of a phenomenon, without providing insight to
intermediary mechanisms that link causes and effects, field
tests are probably best. For example, field tests of a statistical
regression model that relates suspended sediment load to
stream discharge are appropriate because the regression model
makes no pretense of mechanistic understanding; its sole pur-
pose is forecasting the value of a dependent variable (sedi-
ment load) as a function of an observed independent variable
(discharge).  In such a model the only postulate about cause
and effect involves designation of one variable as independ-
ent and the other variable as dependent. Two calibrated
parameters, the regression-line slope and intercept, are
employed to relate the two variables, but no deeper signifi-
cance is ascribed to the calibrated slope and intercept. 

Models that are more ambitious aim to predict not only
final outcomes of phenomena but also mechanistic linkages
between causes and effects. To clarify such linkages, model
input generally includes specification of an initial state that
isolates the phenomenon in time as well as boundary condi-
tions that isolate it in space. Field data from uncontrolled set-
tings are poorly suited for testing such models, because
uncontrolled field settings offer few opportunities for estab-
lishing unambiguous initial conditions and domain bound-
aries.

Geological heterogeneity imposes an additional difficulty
if field data are used to test mechanistic models. All such
models contain parameters, some of which may be nearly
constant (e.g., gravitational acceleration at Earth’s surface)
and others of which may vary significantly within the model
domain (e.g., hydraulic conductivity of soil). Heterogeneities
that are unresolved by parameter measurements can bedevil
any test of predictions because they make it difficult to dis-
tinguish the effects of parameter uncertainty from those of
erroneous model logic [Oreskes et al., 1994]. 

For similar reasons, bringing model predictions into
agreement with field data through adjustment of parameter
values does not constitute a satisfactory test. The predictive
and explanatory power of a model diminishes as dependence
on adjustable coefficients and calibrated parameters increas-
es. When carried to an extreme, calibration of models with
numerous poorly constrained parameters differs little from
fitting a polynomial function with N -1 degrees of freedom to a
set of N scattered data points; the fit is impressive but the result
provides little insight [Jeffreys and Berger, 1992].

Rapidly advancing sciences seldom operate with para-
digms that emphasize natural experiments in uncontrolled,
heterogeneous environments. If high-energy physics
employed the paradigm that elementary particles should be
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observed in the wild rather than in the highly orchestrated
environment of an accelerator, or if molecular biology
employed the paradigm that inferences about DNA
sequences should be drawn from observations within com-
plex, living organisms, the stunning advances of these fields
within the past half century would be implausible. If geo-
morphology is to make similarly rapid advances, a new par-
adigm may be required: mechanistic models of geomorphic
processes should be tested principally with data collected
during controlled, manipulative experiments, not with field
data collected under uncontrolled conditions.

2.3. Hierarchy of Data for Model Tests

The suggestion that controlled experiments ought to
supercede field measurements as the principal means of
model testing in geomorphology contradicts longstanding
practice, as noted by Paola et al. [2001]. Field observations
furnish the inspiration for new models, and allow multiple
working hypotheses to be formulated and evaluated in the
qualitative manner described by Chamberlin [1897], but
field measurements obtained under uncontrolled conditions
yield decisive tests of only the least ambitious quantitative
models, such as statistical models that provide no mechanis-
tic linkage between cause and effect. Field measurements in
situations with unconstrained initial and boundary condi-
tions and undetermined parameter values generally leave
considerable room for declarations and debate about valid
interpretations. However, as summarized by Shapiro [1986],
“Science works neither by pronouncement nor consensus,
but rather by experiment.”

Controlled experiments can provide a high standard of
model testing, but in geomorphology, what constitutes a use-
ful controlled experiment? Good experiments seldom
attempt to duplicate complex conditions that exist in the
field. Rather, the experimenter establishes initial and bound-
ary conditions that are advantageous for testing hypotheses
of interest.  Reproducibility and independent constraints on
all relevant parameter values are other key attributes of an
ideal controlled experiment, whether it is conducted in a lab-
oratory or the field.  Manipulative field experiments (such as
the 1996 controlled flood in Grand Canyon, Arizona [Webb
et al., 1999]) generally have less reproducibility and weaker
constraints on parameter values and boundary conditions
than do laboratory experiments, but offer the advantage of
full scale. In contrast, reproducible laboratory experiments
offer full control over model inputs, but scaling is a critical
issue. Appropriate scaling can be difficult to achieve in
geomorphological experiments, especially if they involve
water, wherein surface tension and viscosity can produce
disproportionately large effects at miniature scales.

Nonetheless, well designed, properly scaled laboratory
experiments commonly provide the most compelling results
in science: successful isolation of the influence of a key
parameter, initial condition, or boundary condition offers
incontrovertible insight.

Critics commonly argue that isolation of phenomena is
artificial, and that this reductionist approach does not capture
the rich complexity of open geomorphic systems in nature
[e.g., Baker, 1996; Werner, 1999]. Although this criticism
has obvious relevance, history shows that it does not consti-
tute a valid condemnation of reductionist science. Virtually
all natural phenomena studied in all fields of science occur in
open systems, yet it is precisely the reductionist isolation of
individual phenomena that has yielded nearly all clear
advances.  

The power of reductionism and advantages of controlled
experimentation may be difficult to embrace in a subject
such as geomorphology, in which evolving interconnections
and emergent behavior are visibly evident. However, this
conspicuous complexity ought to motivate, not deter, inves-
tigations of simple cases that yield clear insight. Consider a
well-known analogy from classical physics: the complex
behavior of nonlinear oscillators (archetypes of chaotic
dynamical systems) is illuminating chiefly because the sim-
pler behavior of linear oscillators is understood so well [e.g.,
Pippard, 1985]. The signal from a nonlinear oscillator might
seem like unintelligible noise if a clear understanding of the
regular cyclicity of linear oscillators were unavailable. Similar
benchmarks of understanding are needed to establish a con-
text for complexity in geomorphology, and reductionist
experiments and model tests provide the surest means of
establishing such benchmarks.

An even higher standard of model testing is available than
that afforded by a carefully controlled experiment, however,
and this higher standard reveals the full power of classical
scientific methods. The standard is characterized well by a
rhetorical question posed to all modelers by Feynman
[1994], which can be paraphrased as, “what else does your
model predict?” Feynman’s point was that models should be
pushed to their limits to examine all possible predictions and
outcomes, and not merely those that pertain to a particular
observation, setting, or experiment. The soundness of a
model can in part be gaged by the breadth of contexts in
which the model applies. Moreover, when a sound model is
used in novel contexts it may predict new and unanticipated
phenomena that motivate new observations and new kinds of
tests. If a model can withstand repeated testing in diverse
applications and experiments, its status gradually rises to that
of theory and, ultimately, to that of physical law. A great
advantage of reductionist science (and of models that arise
from reductionism) lies in its cumulative nature and ability
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to identify and exploit physical laws. Models that are syn-
thesized to meet only a particular purpose lack this advan-
tage of cumulation.

2.4. Hierarchy of Parameter Usage

If two competing models perform equally well in predicting
phenomena of interest, what additional criteria can be used
to judge the merit of the models? One useful guideline is
provided by the types of parameters the models employ. It is
the type, not the number, of parameters that generally distin-
guishes models with a firm physical foundation from “float-
ing” models that are created to reproduce observations math-
ematically without providing linkage to underlying physical
laws [Savage, 1997]. (Extreme examples of such floating
models include the remarkably lifelike digital animations
developed for Hollywood movie productions; the visual
appeal of such animations is immense, but scientific content
is commonly minimal.)

The weakest type of scientific model contains parameters
that have meaning only in the context of that specific model.
The fitted coefficients of statistical regression models fall in
this category, as do similarly adjustable coefficients that are
defined through curve-fitting procedures in more elaborate
models.  Use of such specialized coefficients limits the
potential for broadening the scope of a model to make addi-
tional kinds of predictions subject to additional kinds of tests. 

A relatively low standard is also met by models that
employ parameters with apparent meaning outside the con-
text of the model, but which yield contradictory or even
meaningless results if the parameters are measured outside
the model context. For example, consider models of sub-
glacial till deformation that use a viscosity coefficient to
relate shear stress to shear strain rate. To fit model predic-
tions to field data, till can be assigned a viscosity many bil-
lions of times that of water [e.g., Alley, 1989]. However, lab-
oratory tests of tills in a ring-shear device (which produces
suitably large shear strains) indicate negligible dependence
of shear stress on shear strain rates in the appropriate range.
The laboratory results cast strong doubt on the relevance of
till viscosity as a meaningful parameter, although the mean-
ing of viscosity is unambiguous in other contexts [cf. Iverson
and Iverson, 2001]. Use and calibration of an inappropriate
parameter brings the predictions of viscous till models into
agreement with field data, but lends little real insight and lit-
tle basis for confident prediction if glacier-till systems are
perturbed into states that differ significantly from the states in
which till viscosities were calibrated. 

A better standard of parameter usage is evident in models
containing only relevant parameters that are clearly defined
and readily measured outside the model context, but which

require calibration owing to geological heterogeneity that is
unresolved by independent measurements. Some of the best-
established models used in geosciences fit this description,
including models of seismic wave propagation and fluid flow
through porous media. The basic equations in these models
are either fundamental (conservation of mass and momen-
tum) or have undergone repeated experimental testing
(Hookean elasticity, Darcian permeability). Laboratory and
field experiments with diverse Earth materials have uncovered
cases in which Hooke’s law and Darcy’s law are not valid
(thus, these formulas are not actually “laws” in the strictest
sense), but have reinforced the notion of their wide applica-
bility. Models of seismic-wave propagation and Darcian sub-
surface flow can therefore provide genuine, testable predic-
tions. Nonetheless, the predictive and explanatory power of
these models is compromised if values of elasticity and per-
meability parameters are calibrated through model tuning
rather than measured in independent laboratory or field
experiments.

In geomorphology the need for calibration is greatest in
models that are coarsely parameterized to aid computation of
large-scale phenomena. Coarse parameterization and cali-
bration are justifiable if they explicitly compensate for the
effects of conservation laws operating at scales too small to
be resolved at the model scale. For example, an approximate,
one-dimensional, reach-averaged model of flood-wave prop-
agation in the Colorado River uses a flow resistance param-
eter that is adjusted with changes in river stage to accurately
reproduce observations [Wiele and Smith, 1996]. The resist-
ance adjustments compensate for the model’s neglect of
stage-dependent form drag, an effect of momentum conser-
vation that cannot be represented explicitly in a reach-aver-
aged, 1-D model. Interpretation and justification of the vari-
able-resistance 1-D model hinges not only on its success in
fitting data, but also on its clear mathematical derivation
from more complete, multidimensional flood-wave models.
Such models demonstrate how form drag arises as a conse-
quence of momentum conservation, and they account for
flow resistance at smaller, unresolved scales by using param-
eters with clear links to experimental studies of fluid motion
[e.g., Wiele et al., 1996]. In this case, as in all cases, high
standards of parameter usage and calibration are attained by
establishing links to physical laws and independent experi-
mental data. 

The highest standard of parameter usage exists in models
that employ only parameters clearly defined and definitively
measured outside the context of the model. (A simple exam-
ple is the model dv/dt = g of the descent velocity v of a boul-
der in free fall from a cliff. In this model the sole parameter
g can be measured using a great variety of techniques, which
invariably yield a result similar to 9.8 m/s2 at Earth’s sur-
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face.) Such models require no calibration and make unequiv-
ocal predictions, as long as knowledge of initial and bound-
ary conditions and domain heterogeneity is available. In con-
trast to deep-Earth and deep-time geosciences, geomorphology
can potentially achieve this standard of parameter usage.
Many of the fundamental parameters relevant to geomorphic
processes are nearly constant (e.g., the magnitude of gravita-
tional acceleration at Earth’s surface, and the density, vis-
cosity, and surface tension of water at standard temperature
and pressure), and other parameters vary over ranges that are
minuscule by Earth-materials standards (e.g., the densities of
sediment grains and friction coefficients of grain contacts).
Generally, only heterogeneity provides a serious impediment
to full characterization of the fundamental properties of geo-
morphic materials using independent measurements. 

The real challenge in adopting the highest standards of
parameter usage in geomorphic models may involve a
change of paradigm for model tests: controlled experiments
that isolate phenomena by specifying initial and boundary
conditions and restricting heterogeneity yield the best, least
ambiguous tests of mechanistic models. Effects of realistic
heterogeneities and uncertain initial and boundary condi-
tions should be included in models after model predictions
have been tested in controlled experiments. 

3. APPRAISAL OF MODELS AS 
CONCEPTUAL FRAMEWORKS

Mathematical models can serve a scientific role beyond
prediction. When expressed in mathematical form, mecha-
nistic hypotheses, theories and laws have a precise content
that leaves little room for equivocation about concepts and
assumptions. The role of models as unambiguous conceptual
frameworks highlights the importance of logical consistency
in model formulation. The criteria below provide a basis for
appraising the value of mechanistic geomorphic models as
conceptual frameworks. Models that are not mechanistic
(e.g., statistical models) have limited value in this context.

3.1. Minimization of Axioms and Postulates

It has often been stated that the ultimate goal of science is
finding the most concise yet universal explanation of diverse
natural phenomena. Mathematics is well-suited to this pur-
pose, and mathematical models that minimize the number of
axioms and postulates invoked to explain observations are
inherently superior to those that require additional axioms
and postulates [e.g., Einstein, 1940]. Such minimization was
the great achievement of Newton’s reduction of Kepler’s laws
of planetary motion to a single law of gravitation and of
Einstein’s general theory of relativity, which demonstrated

that gravitation can be viewed as an effect of space-time cur-
vature in the presence of mass rather than as a cause of mass
attraction. In essence, Kepler’s three empirical laws of plane-
tary motion were gradually subsumed by a single geometric
postulate. 

What do the successes of Newton and Einstein imply for
geomorphic modeling? Perhaps the most important lesson is
that invention of new laws should be undertaken with caution,
because new laws must be consistent with all existing laws
and observations. In mechanistic geomorphic models, the
length and time scales of interest generally dictate that clas-
sical gravitation and conservation of mass, momentum, and
energy are the only fundamental laws with universal impor-
tance. Additional (constitutive) “laws” are just surrogates for
conservation laws operating at scales too small to be
resolved at the scale of a particular model. For example,
Darcy’s law summarizes the effect of momentum conservation
as fluid percolates through a porous solid matrix, where
microscopic momentum transfer produces a macroscopic
Darcian drag force. A wealth of experimental data indicate
that the Darcian summary of this process is commonly ade-
quate. However, just as a mathematical model that uses
microscopic momentum conservation to describe flow
through porous media is inherently superior to a model that
invokes Darcy’s law, a model that employs Darcy’s law is
inherently superior to one that invents a new law with weaker
links to conservation laws and experimental tests.
Minimization of postulates always argues against creation of
new laws.

A second lesson from Newton and Einstein is that basic
axioms and postulates (i.e., assumptions) of any model
should be clearly stated. Too often, mathematical models in
geomorphology are presented without clear derivation from
established laws and principles, and model logic must be
accepted on faith or inferred by prospective model users.
Equations presented without derivation can almost seem like
subterfuge, and critics are rightly skeptical of models prom-
ulgated in this manner. If model results have real value, then
it is equally valuable to demonstrate the full logic and deri-
vation of the model, and to acknowledge its limitations.

3.2. Adherence to Classical Conservation Laws

Along with experimentation, physical conservation laws
are the most powerful tools in science. Several of them apply
to all known phenomena at all length and time scales [Feyn-
man, 1994]. In geomorphology the most apt conservation
laws are those of classical mechanics and thermodynamics:
conservation of energy, momentum, and mass. Forces
express momentum transfer at length scales too small to be
observable or resolvable in the problem of interest. Thus,
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Newton’s second law, which characterizes net force as F =
d(mv)/dt, is simply one way of expressing conservation of
observable momentum, mv, as it evolves with time, t.

Geomorphic models should take full advantage of mass
and momentum conservation, because properly formulated
conservation laws involve no assumptions other than identi-
fication of the length and time scales of primary interest and
stipulation of constitutive formulas that summarize behavior
at smaller scales. However, although mass conservation is a
common focus in geomorphic models, momentum conserva-
tion is commonly disregarded or even violated. Generally
this violation is not intentional but is introduced by making
inappropriate assumptions. Such errors can result from
attempts to use one- or two-dimensional models to draw
inferences about three-dimensional phenomena, or from
neglect of an important force through misidentification of the
boundaries of a system in which momentum is conserved. 

Violation of momentum conservation can occur, for exam-
ple, in use of the infinite-slope stability model to calculate
three-dimensional attributes of landslides. The infinite-slope
model assumes that all relevant forces are resolvable on
planes that parallel the ground surface. This simple model
has value as a pedagogical tool, but its one-dimensionality
restricts its practical application to cases where forces on all
slope-normal surfaces are negligible. Nonetheless, some
investigators have applied the infinite-slope model to multi-
dimensional landslides by appending ad hoc terms intended
to account for resisting forces (e.g., root strength) along
landslide margins that do not parallel the ground surface
[e.g., Montgomery et al., 2000]. Addition of such terms with-
out derivation from multidimensional momentum (i.e.,
force-balance) equations breaks the connection of the model
to physical conservation laws.

3.3. Approximations Versus Assumptions

Model formulations should distinguish rational approxi-
mations from assumptions made mostly for convenience.
Some geomorphic models are deemed “approximate” when
“assumed” is a more accurate characterization.
Approximation is a mathematical procedure. Just as the
number 7.2 can be obtained as a rational mathematical
approximation of the number 7.23, approximate equations
can be derived from more complete, more accurate equations
through a rational mathematical process. 

Approximation procedures are particularly relevant with
respect to application of exact conservation laws. For exam-
ple, an exact differential equation describing conservation
of a continuously differentiable scalar quantity c observed
in a deforming, continuous substance with velocity v is

∂c/∂t + v •∇c + c∇• v = S, where S describes the influence of
sources and sinks (phenomena that affect conservation of c
but at a scale that is not resolvable). However, if measure-
ments demonstrate that the deforming substance is nearly
incompressible and undergoes negligible volume change,
then mathematical analysis demonstrates that conservation
of mass implies ∇• v ≈ 0, and the conservation equation for
c thereby reduces to a simpler form, ∂c/∂t + v • ∇c ≈ S.
Applicability of this approximate equation has not been
assumed a priori. Rather, it has been demonstrated through
derivation from a more exact statement of conservation.

A wide variety of approximation procedures are used in
applied mathematics and theoretical physics, and are beyond
the scope of this paper. The key implication these procedures
hold for geomorphic modeling is that rational approxima-
tions are commonly possible, and they differ fundamentally
from assumptions. Only rational approximations reveal how
models are connected to physical conservation laws.

3.4. Conceptual Versus Mathematical Simplicity

The criteria described above—minimization of postulates,
adherence to classical conservation laws, and use of approx-
imations rather than assumptions—can be summarized by
the principle that models should be as simple as possible.
This principle is valid, however, only if a clear distinction is
drawn between mathematical simplicity and conceptual sim-
plicity. Too often in geomorphology, the adjective “simple”
is applied to models that use simple mathematics, not simple
concepts. It is important to recognize that models construct-
ed of elegantly simple, logical, and testable concepts can
yield complicated mathematics, and that models involving
only elementary algebraic equations can express ill-founded
concepts that are untestable or incompatible with physical
laws. As stated by Fourier, “Nature’s indifferent to the diffi-
culties it causes a mathematician,” [Freeze, 1978] and
geomorphologists ought to embrace mathematical challenge
as an integral part of science. 

4. AN EXAMPLE: LANDSLIDE RUNOUT

Many of the issues described above arise in modeling and
predicting runout of rapid landslides. This problem is similar
to many in process geomorphology because it has applica-
tions in geologic hazards assessment and land-use manage-
ment, relevance to long-term sediment delivery and land-
scape change, and intrinsic scientific interest as an observ-
able yet sometimes perplexing phenomenon. The landslide-
runout models described below illustrate a spectrum of con-
ceptual frameworks, predictive power, and modeling pitfalls.
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4.1. The Coulomb Slide-block Model

The best-known model for predicting landslide runout is
the Coulomb slide-block or energy line model first present-
ed by Heim [1932] and still used in some practical applica-
tions [e.g., Sheridan et al., 1999]. The Coulomb slide-block
model is physically based but neglects key aspects of mass
and momentum conservation. The model results from for-
mulating and solving a one-dimensional momentum equa-
tion (Newton’s second law) for a rigid body of density ρ and
uniform thickness h sliding down a slope inclined at an
angle θ,

where φ is the Coulomb friction angle that characterizes the
ratio of shear to normal forces at the sliding surface.
Coulomb friction is a surprisingly simple “emergent” phe-
nomenon that summarizes the macroscopic effect of
momentum conservation at innumerable microscopic grain
contacts [cf. Duran, 2000]. Moreover, Coulomb friction is a
readily measurable property of rocks and soils, and is there-
fore a relevant constitutive parameter to include in landslide
models. 

Interpretation of (1) is facilitated by canceling the factor
ρh from all its terms, which leaves φ and g as the only
parameters of interest. This simplification makes it clear
that (1) is equivalent to an equation describing gravity-driv-
en, frictional sliding of a point mass with zero volume.
Therefore, runout predictions derived from (1) tacitly
assume that effects of landslide volume are inconsequential.

If centripetal acceleration due to slope curvature is neg-
lected (another tacit assumption in Heim’s analysis and in
(1)), integration of (1) along a landslide path with decreas-
ing slope shows that the extent of runout is predicted by

H/L = tan φ

where H is vertical height of landslide descent, and L is the
horizontal runout distance. Laboratory experiments with soil
and rock samples consistently yield Coulomb friction angles
around φ = 30- 40°, and use of these values in (2) yields rel-
atively accurate runout predictions for many small landslides.
However, landslides larger than about 106 m3 typically run
out further than predicted by (2) with φ = 30- 40°, and this
“excess” runout increases systematically as landslide size
increases [e.g., Schiedegger, 1973; Legros, 2002].

The excess runout of large landslides has attracted much
attention: why should a straightforward, physically based
predictive model such as (2) fail systematically?

Remarkably little of this attention has focused on removing
the assumption of zero landslide volume and applying con-
servation laws to evaluate the effects of mass redistribution
and internal momentum transfer. Instead, the point-mass
model (1) has generally been retained, and various extraneous
phenomena have been proposed to explain long runouts.
Some of these proposals are quite plausible (e.g., high fluid
pressures that reduce basal fiction) and others less so, but
none can be evaluated conclusively without first clarifying
the role of mass and momentum conservation in four (space
+ time) dimensions.

4.2. The Adjustable Resistance Model

Many proposals for explaining long landslide runouts
replace the well-supported Coulomb friction term ρgh cos
θ tan φ in (1) with a less exacting expression that allows
adjustment of resisting forces [e.g., Voight et al., 1983]. For
example, a term that includes constant resistance c plus
velocity-dependent resistance can be substituted in (1) to
generate the equation of motion

where c is a finite, stress-independent (“cohesive”) shear
strength and µ is a viscosity coefficient. A wide variety of
results can be generated by using (3) and adjusting the val-
ues of c and µ to match model output with data. This proce-
dure might yield insight if c and µ had clear relevance and
values that were measurable outside the context of the
model. However, numerous laboratory experiments with
pervasively fractured rocks and soils yield almost no evi-
dence of significant viscous behavior over the range of pres-
sures, temperatures, and deformation rates applicable in
landslides, and the experiments yield cohesive strengths too
small to be relevant in large-scale landslides (> 106 m3).

The effect of scale becomes more apparent if (3) is nor-
malized by dividing all terms by ρgh, which yields

This equation demonstrates that effects of cohesion and vis-
cosity (if present) diminish as landslide size increases, because
the landslide thickness, h, appears in the denominators of both
the cohesion and viscous terms. One might argue that this
scaling explains long runouts because it indicates that fixed
resistance due to constant c produces the smallest effects in the
largest landslides [cf. Dade and Huppert, 1998]. However,
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h  = gh sin θ - ρgh  cos  tan φ dv

dt
  ρ   ρ   θ (1)

(3)

(2)

 = sin θ  - v
1
g

dv
dt

c
gh gh2ρ ρ

 - (4)



such arguments are untenable because no experimental evi-
dence indicates that c or µ have relevance like that of tan φ .

4.3. The Mass-Change Model

A different type of untenable argument results from
applying a Coulomb slide-block model similar to (1) to
cases with changing landslide mass—without properly
accounting for the effects of mass change on momentum
conservation. For example, if deposition causes progressive
loss of landslide mass, then a one-dimensional analysis
implies that landslide thinning occurs (dh/dt < 0). To
account for this effect, one might generalize the momentum
equation (1) as

Here, the left-hand side can be expanded as ρ [v(dh/dt) +
h(dv/dt)], which appears to indicate that loss of mass in tran-
sit (dh/dt < 0) increases landslide acceleration (dv/dt) and
ultimately enhances runout [cf. Van Gassen and Cruden,
1989]. This logic is flawed, however, because it assumes
erroneous boundaries for the system in which momentum
conservation applies. If mass leaves the landslide and
becomes part of the stationary bed, momentum conservation
applies not to the moving landslide alone but to the land-
slide and bed together. Viewed another way, if the landslide
behaves as a body decoupled from the underlying Earth, the
Earth must exert an additional external force to cause decel-
eration and depletion of the landslide mass, and this addi-
tional force is neglected in (5) [Erlichson, 1991]. Therefore, pre-
dictions derived from (5) do not yield meaningful conclusions.

This example highlights an important mechanical princi-
ple in geomorphology: any geomorphic process that
involves erosion or sedimentation also involves exchange of
momentum between a surficial body (such as a landslide)
and the underlying Earth. Such mass and momentum
exchange does not, however, imply that conservation laws
are rendered useless owing to the presence of an open sys-
tem. Rather, it implies that the system to be analyzed must
be defined with care and precision.

4.4. The Continuum Conservation-Law Model

A reliable path for discovering the controls of landslide
runout generalizes the momentum balance contained in the
Coulomb sliding model (1) to explore the implications of
continuum conservation laws in four (space + time) dimen-
sions [e.g., Gray et al., 1999]. In this approach the mathe-

matics involve a system of simultaneous, nonlinear partial
differential equations that are considerably more complicat-
ed than (1), but rational approximations facilitate analysis.
No parameters other than those in (1) are introduced, and
the essential concepts remain very simple: momentum is
conserved, mass is conserved, and internal and boundary
forces are governed by Coulomb friction.

With this conceptual framework, explicit and testable pre-
dictions become possible, issues of scale dependence
become clear, and additional effects (such as those of pore-
fluid pressure and runout-path geometry) can be investigated
systematically, without invoking poorly supported simplifying
assumptions [Iverson and Denlinger, 2001; Denlinger and
Iverson, 2001]. In contrast to the single dependent variable
v(t) predicted by (1), the continuum conservation-law model
predicts three interdependent variables: two velocity com-
ponents, vx and vy, and landslide thickness, h, all of which
vary as functions of two map coordinates, x and y, and time
t. Simultaneous prediction of these multiple interdependent
variables expands the possibilities for stringent model tests
[cf. Furbish, this volume].

Four-dimensional continuum conservation-law models
provide a means for drawing concrete conclusions about the
influence of various phenomena affecting landslides (such
as landslide volume, Coulomb friction, path geometry, and
pore-fluid pressure), but they do not provide a panacea.
Such models pose significant computational difficulties,
which highlight the importance of accurate solution methods
(whether numerical or analytical) as well as rigorous model
formulation. Furthermore, a continuum model that invokes
Coulomb friction provides information about phenomena
only at the bulk scale, and grain-scale interactions are unre-
solvable. More detailed models, which include mass and
momentum conservation at smaller scales, can provide
deeper understanding, but generally do so at the cost of less
explicit prediction of macroscopic runout.

4.5. The Many-Body Conservation-Law Model

Detailed phenomena in moving landslides can be exam-
ined by using micromechanical models that resolve momen-
tum and mass conservation at the scale of individual grains
[Campbell et al., 1995]. Such models have undisputed
value, but have very large degrees of freedom (e.g., angular
and linear momenta and positions of each grain). The great
computational demands of such models have, to date, limited
their application to two-dimensional landslides consisting
of no more than about 106 disk-shaped grains (similar to the
number of grains in 1 liter of coarse sand). As a conse-
quence, the full macroscopic effects of mass and momen-
tum conservation in landslides have not been predicted. The
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feasibility of more realistic micromechanical models will
likely grow as computational resources grow. However, in the
foreseeable future, such models will serve the greatest purpose
in providing guidance for improved continuum modeling.

4.6. The Volume Statistics Model

Gaps in existing mechanistic models leave a niche for
empirical models that are less ambitious but more practical.
Physical knowledge and dimensional analysis of the land-
slide runout problem provide guidance for selecting appro-
priate independent and dependent variables and computing
relevant statistics [Iverson et al., 1998].

The systematic decline of measured H/L values with
increasing landslide size indicates that any predictive model
should account for landslide volume explicitly [Davies,
1982] – unlike the models characterized by equations 1-5.
Several investigators [e.g., Hungr, 1990] have noted that the
planimetric area A inundated by a rapid landslide will be
proportional to landslide volume V raised to the 2/3 power
if geometric similarity applies (because A has dimensions of
length squared and V has dimensions of length cubed).
Indeed, an empirical predictive equation

A = 10 V 2/3

fits the trend of data that relate inundated areas to landslide
volumes ranging over many orders of magnitude [Kilburn et
al., 1998; Dade and Huppert, 1998; Legros, 2002]. When
used in conjunction with a similar equation that relates land-
slide volumes to the vertical cross-sectional areas of runout
paths, (6) provides a basis for statistical forecasting of inun-
dation limits [Iverson et al., 1998]. 

If an empirical equation such as (6) is tested and calibrat-
ed statistically, it carries explicit measures of uncertainty
and predictive confidence. This feature argues strongly for
use of empirical statistical models in many practical appli-
cations. Moreover, if elementary physical reasoning such as
dimensional analysis is used to posit and constrain empiri-
cal models, they can serve as stepping stones toward mech-
anistic understanding [Bridgman, 1922]. 

5. CONCLUSION: SELF-INTERROGATION 
FOR MODELERS

The preceding sections of this paper describe criteria that
can guide formulation and appraisal of mathematical mod-
els of observable geomorphic processes. The list below
recapitulates these criteria as a series of ten questions for
consideration by model users as well as model builders.

1. Why construct or use a mathematical model? What is
the objective?

2. If the chief objective is practical prediction of a specific
phenomenon, will an empirical statistical model suffice
and involve fewer assumptions and better estimates of
uncertainty than those of a similarly directed mechanistic
model? 
(If a principal objective is development of a precise and
consistent conceptual framework for describing and
explaining phenomena, proceed with formulation of a
mechanistic model.)

3. Does the mechanistic model satisfy physical conserva-
tion laws (for energy, momentum, and mass)?

4. Have axioms and postulates (such as new “laws”) been
minimized in model formulation?

5. Have the basic axioms, logical development, and
mathematical derivation of the model been fully docu-
mented and justified?

6. Have mathematical simplifications been attained
through rational approximations rather than assump-
tions?

7. Have values of all model parameters been obtained
through independent measurements, insofar as possible?

8. Do predictions of the uncalibrated model match the
results of relevant, controlled experiments? If not,
reformulate the model.

9. Do predictions of the uncalibrated model match field
measurements and observations? If not, is the misfit the
result of undocumented heterogeneity or fine-scale
phenomena that are not resolvable in the model? Is
parameter calibration warranted?

10. What else does the model predict? What are its logical
and mathematical limits? Is the model sufficiently accu-
rate and universal that it can be used to predict and inter-
pret unobservable phenomena such as landscape evolution?
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